面试中常见算法难点详解

日期:2019-10-05编辑作者:前端科技

JavaScript 面试中常见算法难点详解

2017/02/20 · JavaScript · 1 评论 · 算法

原稿出处: 王下邀月熊_Chevalier   

JavaScript 面试中常见算法难点详解 翻译自 Interview Algorithm Questions in Javascript() {…} 从属于笔者的 Web 前端入门与工程施行。下文提到的不菲主题素材从算法角度并不一定要么困难,可是用 JavaScript 内置的 API 来成功只怕须要一番勘测的。

1# Leetcode 367. Valid Perfect Square

Given a positive integer num, write a function which returns True if num is a perfect square else False.

Note: Do not use any built-in library function such as sqrt.

Example 1:
Input: 16
Returns: True

Example 2:
Input: 14
Returns: False

思路:
以256举例
mid = 128 => 128 * 128 > 256 => end = mid = 128;
mid = 64 => 64 * 64 > 256 => end = mid = 64;
mid = 32 => 32 * 32 > 256 => end = mid = 32;
mid = 16 => 16 * 16 = 256 => return true;

以15举例
mid = 8 => 8 * 8 > 15 => end = mid = 8;
mid = 4 => 4 * 4 > 15 => end = mid = 4;
mid = 2 => 2 * 2 < 15 => start = mid = 2; end = 4;
mid = 3 => 3 * 3 < 15 => start = mid = 3; end = 4;
start + 1 = 3 + 1 = 4 = end, while loop end;
start = 3, 3 * 3 != 15 and end = 4, 4 * 4 != 15;
so return false;

public class Solution {
    public boolean isPerfectSquare(int num) {
        if (num < 1) {
            return false;
        }
        long start = 1;
        long end = num;
        while (start + 1 < end) {
            long mid = start + (end - start) / 2;
            if (mid * mid == num) {
                return true;
            } else if (mid * mid < num) {
                start = mid;
            } else {
                end = mid;
            }
        }
        if (start * start == num || end * end == num) {
            return true;
        }
        return false;
    }
}

JavaScript Specification

2# Leetcode 270 Closest Binary Search Tree Value

演说下 JavaScript 中的变量升高

所谓升高,顾名思义便是 JavaScript 会将持有的扬言提高到近些日子成效域的最上端。那也就象征大家得以在某些变量注明前就使用该变量,但是即使JavaScript 会将宣示进步到最上部,然则并不会施行真的初叶化进度。

3# Leetcode 167 Two Sum II - Input array is sorted

/** 
 *  Method one: Two points 一刷
 *    时间复杂度为O(n), 空间复杂度为O(1)。
 */
public int[] twoSum(int[] numbers, int target) {
    int start = 0;
    int end = numbers.length - 1;
    while (start < end) {
        if (numbers[start] + numbers[end] < target) {
            start ++;
        }
        else if(numbers[start] + numbers[end] > target) {
            end --;
        }
        else {
            break;
        }
    }
    return new int[]{start + 1, end + 1};
}

/**
 *     Method 2: Binary Search 一刷
 *     时间复杂度为O(logn), 空间复杂度为O(1)。
 */
public class Solution {
    public int[] twoSum(int[] numbers, int target) {
        int[] result = {0,0};
        int index1 = 0;
        int index2 = 0;

        for(int i = 0; i < numbers.length - 1; i++ ){
            index1 = i + 1;
            if(numbers[i] > target) {
                return result;
            }

            int gap = target - numbers[i];
            int start = i + 1;
            int end = numbers.length - 1;

            while(start + 1 < end){
                int mid = start + (end - start) / 2;
                if(numbers[mid] == gap) {
                    index2 = mid + 1;
                    result[0] = index1;
                    result[1] = index2;
                    return result;
                }
                if (numbers[mid] > gap) {
                    end = mid;
                }
                if (numbers[mid] < gap) {
                    start = mid;
                }
            }
            if (numbers[start] == gap) {
                result[0] = index1;
                result[1] = start + 1;
            }
            if (numbers[end] == gap) {
                result[0] = index1;
                result[1] = end + 1;
            }
        }
       return result;
    }
}

阐述下 use strict; 的作用

use strict; 从名称想到所饱含的意义也正是 JavaScript 会在所谓严峻情势下实践,其壹人命关天的优势在于能够强制开拓者幸免采用未注明的变量。对于老版本的浏览器依然施行引擎则会活动忽略该指令。

JavaScript

// Example of strict mode "use strict"; catchThemAll(); function catchThemAll() { x = 3.14; // Error will be thrown return x * x; }

1
2
3
4
5
6
7
8
// Example of strict mode
"use strict";
 
catchThemAll();
function catchThemAll() {
  x = 3.14; // Error will be thrown
  return x * x;
}

4# Leetcode 441. Arranging Coins

You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.

Given n, find the total number of full staircase rows that can be formed.

n is a non-negative integer and fits within the range of a 32-bit signed integer.

Example 1: n = 5
The coins can form the following rows:
¤
¤ ¤
¤ ¤
Because the 3rd row is incomplete, we return 2.

Example 2: n = 8
The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
Because the 4th row is incomplete, we return 3.

思路:

1 + 2 + 3 + ... + k <= n
=>
(k * ( k + 1)) / 2 <= n

public class Solution {
    public int arrangeCoins(int n) {
        int start = 0;
        int end = n;
        int mid = 0;
        while (start <= end){
            mid = start + (end - start) / 2 ;
            if ((0.5 * mid * mid + 0.5 * mid ) <= n){
                start = mid + 1;
            }else{
                end = mid - 1;
            }
        }
        return start - 1;
    }
}

解说下怎么是 伊夫nt Bubbling 以及哪些幸免

伊芙nt Bubbling 即指某些事件不仅仅会接触当前因素,还有大概会以嵌套顺序传递到父成分中。直观来讲正是对于某些子成分的点击事件同样会被父元素的点击事件管理器捕获。避免伊夫nt Bubbling 的不二秘技能够使用event.stopPropagation() 大概 IE 9 以下使用event.cancelBubble

5# Leetcode 35. Search Insert Position

Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.

You may assume no duplicates in the array.

Here are few examples.
[1,3,5,6], 5 → 2
[1,3,5,6], 2 → 1
[1,3,5,6], 7 → 4
[1,3,5,6], 0 → 0

public class Solution {
    public int searchInsert(int[] nums, int target) {
        if (nums.length == 0 || nums == null) {
            return 0;
        }
        int start = 0;
        int end = nums.length - 1;
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (nums[mid] == target) {
                return mid;
            }
            else if (nums[mid] < target) {
                start = mid;
            }
            else {
                end = mid;
            }
        }
        if (nums[start] >= target) {
            return start;
        }
        else if (nums[end] >= target) {
            return end;
        }
        else {
            return end + 1;
        }
    }
}

== 与 === 的分歧是怎么样

=== 也正是所谓的从严相比,关键的区分在于=== 会同一时间相比较类型与值,并非仅相比较值。

JavaScript

// Example of comparators 0 == false; // true 0 === false; // false 2 == '2'; // true 2 === '2'; // false

1
2
3
4
5
6
// Example of comparators
0 == false; // true
0 === false; // false
 
2 == '2'; // true
2 === '2'; // false

6# Leetcode 374. Guess Number Higher or Lower

We are playing the Guess Game. The game is as follows:

I pick a number from 1 to n. You have to guess which number I picked.

Every time you guess wrong, I'll tell you whether the number is higher or lower.

You call a pre-defined API guess(int num) which returns 3 possible results (-1, 1, or 0):

-1 : My number is lower
1 : My number is higher
0 : Congrats! You got it!

Example:
n = 10, I pick 6.
Return 6.

/* The guess API is defined in the parent class GuessGame.
   @param num, your guess
   @return -1 if my number is lower, 1 if my number is higher, otherwise return 0
      int guess(int num); */

public class Solution extends GuessGame {
    public int guessNumber(int n) {
        int start = 1, end = n;
        while(start + 1 < end) {
            int mid = start + (end - start) / 2;
            if(guess(mid) == 0) {
                return mid;
            } else if(guess(mid) == 1) {
                start = mid;
            } else {
                end = mid;
            }
        }
        if(guess(start) == 1) {
            return end;
        }
        return start;
    }
}

解释下 null 与 undefined 的区别

JavaScript 中,null 是三个方可被分配的值,设置为 null 的变量意味着其无值。而 undefined 则表示着有些变量固然声称精通而尚未进行过其余赋值。

7# Leetcode 69. Sqrt(x)

Implement int sqrt(int x).
Compute and return the square root of x.

public class Solution {
    public int mySqrt(int x) {
        long start = 1;
        long end = x;
        while (start + 1 < end) {
            long mid = start + (end - start) / 2;
            if(mid * mid <= x) {
                start = mid;
            }
            else {
                end = mid;
            }
        }
        if(end * end <= x) {
            return (int)end;
        }
        return (int)start;
    }
}

解释下 Prototypal Inheritance 与 Classical Inheritance 的区别

在类承接中,类是不可变的,分歧的语言中对于多延续的支撑也不雷同,有个别语言中还帮衬接口、final、abstract 的定义。而原型继承则进一步灵活,原型本人是足以可变的,况兼对象只怕一连自五个原型。

8# Leetcode 278. First Bad Version

You are a product manager and currently leading a team to develop a new product. Unfortunately, the latest version of your product fails the quality check. Since each version is developed based on the previous version, all the versions after a bad version are also bad.

Suppose you have n versions [1, 2, ..., n] and you want to find out the first bad one, which causes all the following ones to be bad.

You are given an API bool isBadVersion(version) which will return whether version is bad. Implement a function to find the first bad version. You should minimize the number of calls to the API.

/* The isBadVersion API is defined in the parent class VersionControl.
      boolean isBadVersion(int version); */

public class Solution extends VersionControl {
    public int firstBadVersion(int n) {
        int start = 1;
        int end = n;
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (isBadVersion(mid)) {
                end = mid;
            }
            else {
                start = mid;
            }
        }
        if(isBadVersion(start)) {
            return start;
        }
        return end;
    }
}

数组

9# Leetcode 475. Heaters

Winter is coming! Your first job during the contest is to design a standard heater with fixed warm radius to warm all the houses.

Now, you are given positions of houses and heaters on a horizontal line, find out the minimum radius of heaters so that all houses could be covered by those heaters.

So, your input will be the positions of houses and heaters separately, and your expected output will be the minimum radius standard of heaters.

Note:
Numbers of houses and heaters you are given are non-negative and will not exceed 25000.

Positions of houses and heaters you are given are non-negative and will not exceed 10^9.

As long as a house is in the heaters' warm radius range, it can be warmed.

All the heaters follow your radius standard and the warm radius will the same.

Example 1:
Input: [1,2,3],[2]
Output: 1
Explanation: The only heater was placed in the position 2, and if we use the radius 1 standard, then all the houses can be warmed.

Example 2:
Input: [1,2,3,4],[1,4]
Output: 1
Explanation: The two heater was placed in the position 1 and 4. We need to use radius 1 standard, then all the houses can be warmed.

升序排列加热器的坐标heaters
遍历房子houses,记当前房屋坐标为house:
接纳二分查找,分别找到不高于house的最大加热器坐标left,以及不低于house的矮小加热器坐标right(即左右近期的heater), 则当前屋企所需的小不点儿加热器半径radius = min(house - left, right - house)。利用radius更新最终答案。

public class Solution {
    public int findRadius(int[] houses, int[] heaters) {
        //sort
        Arrays.sort(houses);
        Arrays.sort(heaters);

        int radius = 0;
        for( int house: houses) {
            int local = binarySearch(heaters, house);
            radius = Math.max(radius, local);
        }
        return radius;
    }

    private int binarySearch(int[] heaters, int target) {
        int start = 0;
        int end = heaters.length - 1;
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (heaters[mid] == target) {
                return 0;
            } else if (heaters[mid] < target) {
                start = mid;
            } else {
                end = mid;
            }
        }
        return Math.min (Math.abs(target - heaters[start]),
                        Math.abs(target - heaters[end]));
    }
}

找寻整型数组中乘积最大的几个数

给定贰个蕴含整数的冬季数组,须求寻觅乘积最大的多少个数。

JavaScript

var unsorted_array = [-10, 7, 29, 30, 5, -10, -70]; computeProduct(unsorted_array); // 21000 function sortIntegers(a, b) { return a - b; } // greatest product is either (min1 * min2 * max1 || max1 * max2 * max3) function computeProduct(unsorted) { var sorted_array = unsorted.sort(sortIntegers), product1 = 1, product2 = 1, array_n_element = sorted_array.length - 1; // Get the product of three largest integers in sorted array for (var x = array_n_element; x > array_n_element - 3; x--) { product1 = product1 * sorted_array[x]; } product2 = sorted_array[0] * sorted_array[1] * sorted_array[array_n_element]; if (product1 > product2) return product1; return product2 };

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
var unsorted_array = [-10, 7, 29, 30, 5, -10, -70];
 
computeProduct(unsorted_array); // 21000
 
function sortIntegers(a, b) {
  return a - b;
}
 
// greatest product is either (min1 * min2 * max1 || max1 * max2 * max3)
function computeProduct(unsorted) {
  var sorted_array = unsorted.sort(sortIntegers),
    product1 = 1,
    product2 = 1,
    array_n_element = sorted_array.length - 1;
 
  // Get the product of three largest integers in sorted array
  for (var x = array_n_element; x > array_n_element - 3; x--) {
      product1 = product1 * sorted_array[x];
  }
  product2 = sorted_array[0] * sorted_array[1] * sorted_array[array_n_element];
 
  if (product1 > product2) return product1;
 
  return product2
};

10# Leetcode 349. Intersection of Two Arrays

Given two arrays, write a function to compute their intersection.

Example:
Given nums1 = [1, 2, 2, 1], nums2 = [2, 2], return [2].

Note:
Each element in the result must be unique.
The result can be in any order.

public class Solution {
    public int[] intersection(int[] nums1, int[] nums2) {
        if(nums1 == null || nums2 == null) {
            return null;
        }

        HashSet<Integer> set = new HashSet<>();
        Arrays.sort(nums1);

        for (int i = 0; i < nums2.length; i++) {
            if(set.contains(nums2[i])){
                continue;
            }
            if(binarySearch(num1, nums2[i])) {
                set.add(nums2[i]);
            }
        }

        int[] result = new int[set.size()];
        int index = 0;
        for (Integer num : set) {
            result[index++] = num;
        }
        return result;
    }

    private boolean binarySearch(int[] nums, int target) {
        if (nums == null || nums.length == 0) {
            return false;
        }
        int start = 0;
        int end = nums.length - 1;
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (nums[mid] == target) {
                return true;
            }
            else if (nums[mid] < target) {
                start = mid;
            }
            else {
                end = mid;
            }
        }

        if(nums[start] == target || nums[end] == target) {
            return true;
        }
        return false;
    }
}

招来三番五次数组中的缺点和失误数

给定某冬季数组,其含有了 n 个延续数字中的 n – 1 个,已知上下面界,需要以O(n)的复杂度寻觅缺失的数字。

JavaScript

// The output of the function should be 8 var array_of_integers = [2, 5, 1, 4, 9, 6, 3, 7]; var upper_bound = 9; var lower_bound = 1; findMissingNumber(array_of_integers, upper_bound, lower_bound); //8 function findMissingNumber(array_of_integers, upper_bound, lower_bound) { // Iterate through array to find the sum of the numbers var sum_of_integers = 0; for (var i = 0; i < array_of_integers.length; i++) { sum_of_integers += array_of_integers[i]; } // 以高斯求和公式计算理论上的数组和 // Formula: [(N * (N + 1)) / 2] - [(M * (M - 1)) / 2]; // N is the upper bound and M is the lower bound upper_limit_sum = (upper_bound * (upper_bound + 1)) / 2; lower_limit_sum = (lower_bound * (lower_bound - 1)) / 2; theoretical_sum = upper_limit_sum - lower_limit_sum; // return (theoretical_sum - sum_of_integers) }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// The output of the function should be 8
var array_of_integers = [2, 5, 1, 4, 9, 6, 3, 7];
var upper_bound = 9;
var lower_bound = 1;
 
findMissingNumber(array_of_integers, upper_bound, lower_bound); //8
 
function findMissingNumber(array_of_integers, upper_bound, lower_bound) {
 
  // Iterate through array to find the sum of the numbers
  var sum_of_integers = 0;
  for (var i = 0; i < array_of_integers.length; i++) {
    sum_of_integers += array_of_integers[i];
  }
 
  // 以高斯求和公式计算理论上的数组和
  // Formula: [(N * (N + 1)) / 2] - [(M * (M - 1)) / 2];
  // N is the upper bound and M is the lower bound
 
  upper_limit_sum = (upper_bound * (upper_bound + 1)) / 2;
  lower_limit_sum = (lower_bound * (lower_bound - 1)) / 2;
 
  theoretical_sum = upper_limit_sum - lower_limit_sum;
 
  //
  return (theoretical_sum - sum_of_integers)
}

11# Leetcode 350. Intersection of Two Arrays II

Given two arrays, write a function to compute their intersection.

Example:
Given nums1 = [1, 2, 2, 1], nums2 = [2, 2], return [2, 2].

Note:
Each element in the result should appear as many times as it shows in both arrays.
The result can be in any order.
Follow up:
What if the given array is already sorted? How would you optimize your algorithm?
What if nums1's size is small compared to nums2's size? Which algorithm is better?
What if elements of nums2 are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?

public class Solution {
    public int[] intersect(int[] nums1, int[] nums2) {
        Arrays.sort(nums1);
        Arrays.sort(nums2);
        int index1 = 0;
        int index2 = 0;
        List<Integer> list = new ArrayList<>();
        while(index1 < nums1.length && index2 < nums2.length) {
            if (nums1[index1] == nums2[index2]) {
                list.add(nums1[index1]);
                index1++;
                index2++;
            } else if (nums1[index1] < nums2[index2]) {
                index1++;
            } else if (nums1[index1] > nums2[index2]) {
                index2++;
            }
        }
        int[] result = new int[list.size()];
        int index = 0;
        for (int element: list) {
            result[index++] = element;
        }
        return result;
    }
}

数组去重

给定某严节数组,须求去除数组中的重复数字并且再次回到新的无重复数组。

JavaScript

// ES6 Implementation var array = [1, 2, 3, 5, 1, 5, 9, 1, 2, 8]; Array.from(new Set(array)); // [1, 2, 3, 5, 9, 8] // ES5 Implementation var array = [1, 2, 3, 5, 1, 5, 9, 1, 2, 8]; uniqueArray(array); // [1, 2, 3, 5, 9, 8] function uniqueArray(array) { var hashmap = {}; var unique = []; for(var i = 0; i < array.length; i++) { // If key returns null (unique), it is evaluated as false. if(!hashmap.hasOwnProperty([array[i]])) { hashmap[array[i]] = 1; unique.push(array[i]); } } return unique; }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// ES6 Implementation
var array = [1, 2, 3, 5, 1, 5, 9, 1, 2, 8];
 
Array.from(new Set(array)); // [1, 2, 3, 5, 9, 8]
 
 
// ES5 Implementation
var array = [1, 2, 3, 5, 1, 5, 9, 1, 2, 8];
 
uniqueArray(array); // [1, 2, 3, 5, 9, 8]
 
function uniqueArray(array) {
  var hashmap = {};
  var unique = [];
  for(var i = 0; i < array.length; i++) {
    // If key returns null (unique), it is evaluated as false.
    if(!hashmap.hasOwnProperty([array[i]])) {
      hashmap[array[i]] = 1;
      unique.push(array[i]);
    }
  }
  return unique;
}

12# Leetcode 153. Find Minimum in Rotated Sorted Array

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

Find the minimum element.

You may assume no duplicate exists in the array.

public class Solution {
    public int findMin(int[] nums) {
        if (nums == null || nums.length == 0) {
            return -1;
        }
        int start = 0;
        int end = nums.length - 1;
        int target = nums[nums.length - 1];

        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (nums[mid] <= target) {
                end = mid;
            }
            else {
                start = mid;
            }
        }
        if (nums[start] <= target) {
            return nums[start];
        } else {
            return nums[end];
        }
    }
}

数组兰月素最大差值计算

给定某严节数组,求取跋扈三个成分之间的最大差值,注意,这里须要差值总括中相当的小的要素下标必需低于十分大因素的下标。举例[7, 8, 4, 9, 9, 15, 3, 1, 10]以此数组的计算值是 11( 15 – 4 ) 实际不是 14(15 – 1),因为 15 的下标小于 1。

JavaScript

var array = [7, 8, 4, 9, 9, 15, 3, 1, 10]; // [7, 8, 4, 9, 9, 15, 3, 1, 10] would return `11` based on the difference between `4` and `15` // Notice: It is not `14` from the difference between `15` and `1` because 15 comes before 1. findLargestDifference(array); function findLargestDifference(array) { // 假设数组只有叁个因素,则从来回到 -1 if (array.length <= 1) return -1; // current_min 指向当前的小不点儿值 var current_min = array[0]; var current_max_difference = 0; // 遍历整个数组以求取当前最大差值,假使发掘有个别最大差值,则将新的值覆盖 current_max_difference // 同一时间也会追踪当前数组中的最小值,进而确定保障 `largest value in future` - `smallest value before it` for (var i = 1; i < array.length; i++) { if (array[i] > current_min && (array[i] - current_min > current_max_difference)) { current_max_difference = array[i] - current_min; } else if (array[i] <= current_min) { current_min = array[i]; } } // If negative or 0, there is no largest difference if (current_max_difference <= 0) return -1; return current_max_difference; }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
var array = [7, 8, 4, 9, 9, 15, 3, 1, 10];
// [7, 8, 4, 9, 9, 15, 3, 1, 10] would return `11` based on the difference between `4` and `15`
// Notice: It is not `14` from the difference between `15` and `1` because 15 comes before 1.
 
findLargestDifference(array);
 
function findLargestDifference(array) {
 
  // 如果数组仅有一个元素,则直接返回 -1
 
  if (array.length <= 1) return -1;
 
  // current_min 指向当前的最小值
 
  var current_min = array[0];
  var current_max_difference = 0;
  
  // 遍历整个数组以求取当前最大差值,如果发现某个最大差值,则将新的值覆盖 current_max_difference
  // 同时也会追踪当前数组中的最小值,从而保证 `largest value in future` - `smallest value before it`
 
  for (var i = 1; i < array.length; i++) {
    if (array[i] > current_min && (array[i] - current_min > current_max_difference)) {
      current_max_difference = array[i] - current_min;
    } else if (array[i] <= current_min) {
      current_min = array[i];
    }
  }
 
  // If negative or 0, there is no largest difference
  if (current_max_difference <= 0) return -1;
 
  return current_max_difference;
}

13# Leetcode 154. Find Minimum in Rotated Sorted Array II

// version 1: just for loop is enough
public class Solution {
    public int findMin(int[] nums) {
        //  这道题目在面试中不会让写完整的程序
        //  只需要知道最坏情况下 [1,1,1....,1] 里有一个0
        //  这种情况使得时间复杂度必须是 O(n)
        //  因此写一个for循环就好了。
        //  如果你觉得,不是每个情况都是最坏情况,你想用二分法解决不是最坏情况的情况,那你就写一个二分吧。
        //  反正面试考的不是你在这个题上会不会用二分法。这个题的考点是你想不想得到最坏情况。
        int min = nums[0];
        for (int i = 1; i < nums.length; i++) {
            if (nums[i] < min)
                min = nums[i];
        }
        return min;
    }
}

// version 2: use *fake* binary-search
public class Solution {
    /**
     * @param num: a rotated sorted array
     * @return: the minimum number in the array
     */
    public int findMin(int[] nums) {
        if (nums == null || nums.length == 0) {
            return -1;
        }

        int start = 0, end = nums.length - 1;
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (nums[mid] == nums[end]) {
                // if mid equals to end, that means it's fine to remove end
                // the smallest element won't be removed
                end--;
            } else if (nums[mid] < nums[end]) {
                end = mid;
            } else {
                start = mid;
            }
        }

        if (nums[start] <= nums[end]) {
            return nums[start];
        }
        return nums[end];
    }
}

数组桐月素乘积

给定某严节数组,必要回到新数组 output ,个中 output[i] 为原数组中除去下标为 i 的成分之外的成分乘积,要求以 O(n) 复杂度实现:

JavaScript

var firstArray = [2, 2, 4, 1]; var secondArray = [0, 0, 0, 2]; var thirdArray = [-2, -2, -3, 2]; productExceptSelf(firstArray); // [8, 8, 4, 16] productExceptSelf(secondArray); // [0, 0, 0, 0] productExceptSelf(thirdArray); // [12, 12, 8, -12] function productExceptSelf(numArray) { var product = 1; var size = numArray.length; var output = []; // From first array: [1, 2, 4, 16] // The last number in this case is already in the right spot (allows for us) // to just multiply by 1 in the next step. // This step essentially gets the product to the left of the index at index + 1 for (var x = 0; x < size; x++) { output.push(product); product = product * numArray[x]; } // From the back, we multiply the current output element (which represents the product // on the left of the index, and multiplies it by the product on the right of the element) var product = 1; for (var i = size - 1; i > -1; i--) { output[i] = output[i] * product; product = product * numArray[i]; } return output; }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
var firstArray = [2, 2, 4, 1];
var secondArray = [0, 0, 0, 2];
var thirdArray = [-2, -2, -3, 2];
 
productExceptSelf(firstArray); // [8, 8, 4, 16]
productExceptSelf(secondArray); // [0, 0, 0, 0]
productExceptSelf(thirdArray); // [12, 12, 8, -12]
 
function productExceptSelf(numArray) {
  var product = 1;
  var size = numArray.length;
  var output = [];
 
  // From first array: [1, 2, 4, 16]
  // The last number in this case is already in the right spot (allows for us)
  // to just multiply by 1 in the next step.
  // This step essentially gets the product to the left of the index at index + 1
  for (var x = 0; x < size; x++) {
      output.push(product);
      product = product * numArray[x];
  }
 
  // From the back, we multiply the current output element (which represents the product
  // on the left of the index, and multiplies it by the product on the right of the element)
  var product = 1;
  for (var i = size - 1; i > -1; i--) {
      output[i] = output[i] * product;
      product = product * numArray[i];
  }
 
  return output;
}

14# Leetcode 33. Search in Rotated Sorted Array

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

public class Solution {
    public int search(int[] nums, int target) {
        if (nums == null || nums.length == 0) {
            return -1;
        }
        int start = 0;
        int end = nums.length - 1;
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (nums[mid] == target) {
                return mid;
            }
            if (nums[start] < nums[mid]) {
                if (nums[start] <= target && target <= nums[mid]) {
                    end = mid;
                } else {
                    start = mid;
                } 
            }
            else {
                if (nums[mid] <= target && target <= nums[end]) {
                    start = mid;
                }
                else {
                    end = mid;
                }
            }
        }
        if (nums[start] == target) {
            return start;
        }
        if (nums[end] ==  target) {
            return end;
        }
        return -1;
    }
}

数组交集

给定五个数组,供给求出八个数组的叶影参差,注意,交集中的因素应该是独一无二的。

JavaScript

var firstArray = [2, 2, 4, 1]; var secondArray = [1, 2, 0, 2]; intersection(firstArray, secondArray); // [2, 1] function intersection(firstArray, secondArray) { // The logic here is to create a hashmap with the elements of the firstArray as the keys. // After that, you can use the hashmap's O(1) look up time to check if the element exists in the hash // If it does exist, add that element to the new array. var hashmap = {}; var intersectionArray = []; firstArray.forEach(function(element) { hashmap[element] = 1; }); // Since we only want to push unique elements in our case... we can implement a counter to keep track of what we already added secondArray.forEach(function(element) { if (hashmap[element] === 1) { intersectionArray.push(element); hashmap[element]++; } }); return intersectionArray; // Time complexity O(n), Space complexity O(n) }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
var firstArray = [2, 2, 4, 1];
var secondArray = [1, 2, 0, 2];
 
intersection(firstArray, secondArray); // [2, 1]
 
function intersection(firstArray, secondArray) {
  // The logic here is to create a hashmap with the elements of the firstArray as the keys.
  // After that, you can use the hashmap's O(1) look up time to check if the element exists in the hash
  // If it does exist, add that element to the new array.
 
  var hashmap = {};
  var intersectionArray = [];
 
  firstArray.forEach(function(element) {
    hashmap[element] = 1;
  });
 
  // Since we only want to push unique elements in our case... we can implement a counter to keep track of what we already added
  secondArray.forEach(function(element) {
    if (hashmap[element] === 1) {
      intersectionArray.push(element);
      hashmap[element]++;
    }
  });
 
  return intersectionArray;
 
  // Time complexity O(n), Space complexity O(n)
}

15# Leetcode 81. Search in Rotated Sorted Array II

Follow up for "Search in Rotated Sorted Array":
What if duplicates are allowed?

Would this affect the run-time complexity? How and why?
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

Write a function to determine if a given target is in the array.

The array may contain duplicates.

public class Solution {
    // 这个问题在面试中不会让实现完整程序
    // 只需要举出能够最坏情况的数据是 [1,1,1,1... 1] 里有一个0即可。
    // 在这种情况下是无法使用二分法的,复杂度是O(n)
    // 因此写个for循环最坏也是O(n),那就写个for循环就好了
    //  如果你觉得,不是每个情况都是最坏情况,你想用二分法解决不是最坏情况的情况,那你就写一个二分吧。
    //  反正面试考的不是你在这个题上会不会用二分法。这个题的考点是你想不想得到最坏情况。
    public boolean search(int[] nums, int target) {
        for (int i = 0; i < nums.length; i ++) {
            if (nums[i] == target) {
                return true;
            }
        }
        return false;
    }
}

字符串

16# Leetcode 34. Search for a Range

Given an array of integers sorted in ascending order, find the starting and ending position of a given target value.

Your algorithm's runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].

public class Solution {
    public int[] searchRange(int[] nums, int target) {
       if (nums.length == 0) {
            return new int[]{-1,-1};
        }
        int[] bound = new int[2];
        // search for left bound
        int start = 0;
        int end = nums.length - 1;
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (nums[mid] == target) {
                end = mid;
            } else if (nums[mid] < target) {
                start = mid;
            } else {
                end = mid;
            }
        }
        if (nums[start] == target) {
            bound[0] = start;
        } else if (nums[end] == target) {
            bound[0] = end;
        } else {
            bound[0] = bound[1] = -1;
            return bound;
        }
        //search for right bound
        start = 0;
        end = nums.length - 1;
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (nums[mid] == target) {
                start = mid;
            } else if (nums[mid] < target) {
                start = mid;
            } else {
                end = mid;
            }
        }
        if (nums[end] == target) {
            bound[1] = end;
        } else if (nums[start] == target) {
            bound[1] = start;
        } else {
            bound[0] = bound[1] = -1;
            return bound;
        }
        return bound;
    }
}

颠倒字符串

加以有个别字符串,需要将里面单词倒转之后然后输出,比如”Welcome to this Javascript Guide!” 应该出口为 “emocleW ot siht tpircsavaJ !ediuG”。

JavaScript

var string = "Welcome to this Javascript Guide!"; // Output becomes !ediuG tpircsavaJ siht ot emocleW var reverseEntireSentence = reverseBySeparator(string, ""); // Output becomes emocleW ot siht tpircsavaJ !ediuG var reverseEachWord = reverseBySeparator(reverseEntireSentence, " "); function reverseBySeparator(string, separator) { return string.split(separator).reverse().join(separator); }

1
2
3
4
5
6
7
8
9
10
11
var string = "Welcome to this Javascript Guide!";
 
// Output becomes !ediuG tpircsavaJ siht ot emocleW
var reverseEntireSentence = reverseBySeparator(string, "");
 
// Output becomes emocleW ot siht tpircsavaJ !ediuG
var reverseEachWord = reverseBySeparator(reverseEntireSentence, " ");
 
function reverseBySeparator(string, separator) {
  return string.split(separator).reverse().join(separator);
}

17# Leetcode 74. Search a 2D Matrix

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

Integers in each row are sorted from left to right.
The first integer of each row is greater than the last integer of the previous row.

For example,
Consider the following matrix:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
Given target = 3, return true.

public class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        if (matrix == null || matrix.length == 0 || matrix[0] == null || matrix[0].length == 0) {
            return false;
        }
        int row = matrix.length;
        int column = matrix[0].length;
        int start = 0;
        int end = row * column - 1;
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            int number = matrix[mid / column][mid % column];
            if (number == target) {
                return true;
            } else if (number < target) {
                start = mid;
            } else {
                end = mid;
            }
        }
        if (matrix[start / column][start % column] == target) {
            return true;
        } else if (matrix[end / column][end % column] == target) {
            return true;
        }
        return false;
    }
}

乱序同字母字符串

给定多个字符串,决断是或不是颠倒字母而成的字符串,例如MaryArmy不怕同字母而一一颠倒:

JavaScript

var firstWord = "Mary"; var secondWord = "Army"; isAnagram(firstWord, secondWord); // true function isAnagram(first, second) { // For case insensitivity, change both words to lowercase. var a = first.toLowerCase(); var b = second.toLowerCase(); // Sort the strings, and join the resulting array to a string. Compare the results a = a.split("").sort().join(""); b = b.split("").sort().join(""); return a === b; }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
var firstWord = "Mary";
var secondWord = "Army";
 
isAnagram(firstWord, secondWord); // true
 
function isAnagram(first, second) {
  // For case insensitivity, change both words to lowercase.
  var a = first.toLowerCase();
  var b = second.toLowerCase();
 
  // Sort the strings, and join the resulting array to a string. Compare the results
  a = a.split("").sort().join("");
  b = b.split("").sort().join("");
 
  return a === b;
}

18# Leetcode 240. Search a 2D Matrix II

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
For example,

Consider the following matrix:

[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]

Given target = 5, return true.
Given target = 20, return false.

public class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return false;
        }
        int row = 0;
        int col = matrix[0].length - 1;
        while (col >= 0 && row <= matrix.length - 1) {
            if (target == matrix[row][col]) {
                return true;
            } else if (target < matrix[row][col]) {
                col--;
            } else if (target > matrix[row][col]) {
                row ++;
            }
        }
        return false;
    }
}

会问字符串

判定有些字符串是或不是为回文字符串,比方racecarrace car都以回文字符串:

JavaScript

isPalindrome("racecar"); // true isPalindrome("race Car"); // true function isPalindrome(word) { // Replace all non-letter chars with "" and change to lowercase var lettersOnly = word.toLowerCase().replace(/s/g, ""); // Compare the string with the reversed version of the string return lettersOnly === lettersOnly.split("").reverse().join(""); }

1
2
3
4
5
6
7
8
9
10
isPalindrome("racecar"); // true
isPalindrome("race Car"); // true
 
function isPalindrome(word) {
  // Replace all non-letter chars with "" and change to lowercase
  var lettersOnly = word.toLowerCase().replace(/s/g, "");
 
  // Compare the string with the reversed version of the string
  return lettersOnly === lettersOnly.split("").reverse().join("");
}

19# Leetcode 230. Kth Smallest Element in a BST

栈与队列

20# Leetcode 378. Kth Smallest Element in a Sorted Matrix

动用五个栈实现入队与出队

JavaScript

var inputStack = []; // First stack var outputStack = []; // Second stack // For enqueue, just push the item into the first stack function enqueue(stackInput, item) { return stackInput.push(item); } function dequeue(stackInput, stackOutput) { // Reverse the stack such that the first element of the output stack is the // last element of the input stack. After that, pop the top of the output to // get the first element that was ever pushed into the input stack if (stackOutput.length <= 0) { while(stackInput.length > 0) { var elementToOutput = stackInput.pop(); stackOutput.push(elementToOutput); } } return stackOutput.pop(); }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
var inputStack = []; // First stack
var outputStack = []; // Second stack
 
// For enqueue, just push the item into the first stack
function enqueue(stackInput, item) {
  return stackInput.push(item);
}
 
function dequeue(stackInput, stackOutput) {
  // Reverse the stack such that the first element of the output stack is the
  // last element of the input stack. After that, pop the top of the output to
  // get the first element that was ever pushed into the input stack
  if (stackOutput.length <= 0) {
    while(stackInput.length > 0) {
      var elementToOutput = stackInput.pop();
      stackOutput.push(elementToOutput);
    }
  }
 
  return stackOutput.pop();
}

21# Leetcode 162. Find Peak Element

判定大括号是或不是关闭

创办二个函数来判断给定的表达式中的大括号是或不是关闭:

JavaScript

var expression = "{{}}{}{}" var expressionFalse = "{}{{}"; isBalanced(expression); // true isBalanced(expressionFalse); // false isBalanced(""); // true function isBalanced(expression) { var checkString = expression; var stack = []; // If empty, parentheses are technically balanced if (checkString.length <= 0) return true; for (var i = 0; i < checkString.length; i++) { if(checkString[i] === '{') { stack.push(checkString[i]); } else if (checkString[i] === '}') { // Pop on an empty array is undefined if (stack.length > 0) { stack.pop(); } else { return false; } } } // If the array is not empty, it is not balanced if (stack.pop()) return false; return true; }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
var expression = "{{}}{}{}"
var expressionFalse = "{}{{}";
 
isBalanced(expression); // true
isBalanced(expressionFalse); // false
isBalanced(""); // true
 
function isBalanced(expression) {
  var checkString = expression;
  var stack = [];
 
  // If empty, parentheses are technically balanced
  if (checkString.length <= 0) return true;
 
  for (var i = 0; i < checkString.length; i++) {
    if(checkString[i] === '{') {
      stack.push(checkString[i]);
    } else if (checkString[i] === '}') {
      // Pop on an empty array is undefined
      if (stack.length > 0) {
        stack.pop();
      } else {
        return false;
      }
    }
  }
 
  // If the array is not empty, it is not balanced
  if (stack.pop()) return false;
  return true;
}

22# Leetcode 454. 4Sum II

Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.

To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.

Example:
Input:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]

Output:
2

Explanation:
The two tuples are:

  1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
  2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0

递归

23# Leetcode 436. Find Right Interval

Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i.

For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array.

Note:
You may assume the interval's end point is always bigger than its start point.
You may assume none of these intervals have the same start point.
Example 1:
Input: [ [1,2] ]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.

Example 2:
Input: [ [3,4], [2,3], [1,2] ]
Output: [-1, 0, 1]
Explanation: There is no satisfied "right" interval for [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point;
For [1,2], the interval [2,3] has minimum-"right" start point.

Example 3:
Input: [ [1,4], [2,3], [3,4] ]
Output: [-1, 2, -1]
Explanation: There is no satisfied "right" interval for [1,4] and [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point.

二进制调换

通过有些递归函数将输入的数字转化为二进制字符串:

JavaScript

decimalToBinary(3); // 11 decimalToBinary(8); // 1000 decimalToBinary(1000); // 1111101000 function decimalToBinary(digit) { if(digit >= 1) { // If digit is not divisible by 2 then recursively return proceeding // binary of the digit minus 1, 1 is added for the leftover 1 digit if (digit % 2) { return decimalToBinary((digit - 1) / 2) + 1; } else { // Recursively return proceeding binary digits return decimalToBinary(digit / 2) + 0; } } else { // Exit condition return ''; } }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
decimalToBinary(3); // 11
decimalToBinary(8); // 1000
decimalToBinary(1000); // 1111101000
 
function decimalToBinary(digit) {
  if(digit >= 1) {
    // If digit is not divisible by 2 then recursively return proceeding
    // binary of the digit minus 1, 1 is added for the leftover 1 digit
    if (digit % 2) {
      return decimalToBinary((digit - 1) / 2) + 1;
    } else {
      // Recursively return proceeding binary digits
      return decimalToBinary(digit / 2) + 0;
    }
  } else {
    // Exit condition
    return '';
  }
}

24# Leetcode 300. Longest Increasing Subsequence

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?

二分查找

JavaScript

function recursiveBinarySearch(array, value, leftPosition, rightPosition) { // Value DNE if (leftPosition > rightPosition) return -1; var middlePivot = Math.floor((leftPosition + rightPosition) / 2); if (array[middlePivot] === value) { return middlePivot; } else if (array[middlePivot] > value) { return recursiveBinarySearch(array, value, leftPosition, middlePivot - 1); } else { return recursiveBinarySearch(array, value, middlePivot + 1, rightPosition); } }

1
2
3
4
5
6
7
8
9
10
11
12
13
function recursiveBinarySearch(array, value, leftPosition, rightPosition) {
  // Value DNE
  if (leftPosition > rightPosition) return -1;
 
  var middlePivot = Math.floor((leftPosition + rightPosition) / 2);
  if (array[middlePivot] === value) {
    return middlePivot;
  } else if (array[middlePivot] > value) {
    return recursiveBinarySearch(array, value, leftPosition, middlePivot - 1);
  } else {
    return recursiveBinarySearch(array, value, middlePivot + 1, rightPosition);
  }
}

25# Leetcode 287. Find the Duplicate Number

数字

26# Leetcode 275. H-Index II

判定是或不是为 2 的指数值

JavaScript

isPowerOfTwo(4); // true isPowerOfTwo(64); // true isPowerOfTwo(1); // true isPowerOfTwo(0); // false isPowerOfTwo(-1); // false // For the non-zero case: function isPowerOfTwo(number) { // `&` uses the bitwise n. // In the case of number = 4; the expression would be identical to: // `return (4 & 3 === 0)` // In bitwise, 4 is 100, and 3 is 011. Using &, if two values at the same // spot is 1, then result is 1, else 0. In this case, it would return 000, // and thus, 4 satisfies are expression. // In turn, if the expression is `return (5 & 4 === 0)`, it would be false // since it returns 101 & 100 = 100 (NOT === 0) return number & (number - 1) === 0; } // For zero-case: function isPowerOfTwoZeroCase(number) { return (number !== 0) && ((number & (number - 1)) === 0); }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
isPowerOfTwo(4); // true
isPowerOfTwo(64); // true
isPowerOfTwo(1); // true
isPowerOfTwo(0); // false
isPowerOfTwo(-1); // false
 
// For the non-zero case:
function isPowerOfTwo(number) {
  // `&` uses the bitwise n.
  // In the case of number = 4; the expression would be identical to:
  // `return (4 & 3 === 0)`
  // In bitwise, 4 is 100, and 3 is 011. Using &, if two values at the same
  // spot is 1, then result is 1, else 0. In this case, it would return 000,
  // and thus, 4 satisfies are expression.
  // In turn, if the expression is `return (5 & 4 === 0)`, it would be false
  // since it returns 101 & 100 = 100 (NOT === 0)
 
  return number & (number - 1) === 0;
}
 
// For zero-case:
function isPowerOfTwoZeroCase(number) {
  return (number !== 0) && ((number & (number - 1)) === 0);
}

 

3 赞 12 收藏 1 评论

图片 1

27# Leetcode 50. Pow(x, n)

28# Leetcode 29. Divide Two Integers

29# Leetcode 222. Count Complete Tree Nodes

30# Leetcode 209. Minimum Size Subarray Sum

31# Leetcode 392. Is Subsequence

32# Leetcode 4. Median of Two Sorted Arrays

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:
nums1 = [1, 3], nums2 = [2]
The median is 2.0

Example 2:
nums1 = [1, 2], nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5

33# Leetcode 363. Max Sum of Rectangle No Larger Than K

34# Leetcode 354. Russian Doll Envelopes

35# Leetcode 410. Split Array Largest Sum

Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.

Note:
If n is the length of array, assume the following constraints are satisfied:

1 ≤ n ≤ 1000

1 ≤ m ≤ min(50, n)
Examples:

Input:
nums = [7,2,5,10,8]
m = 2
Output:
18

Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.

36# Leetcode 302.Smallest Rectangle Enclosing Black Pixels

37# Leetcode 174. Dungeon Game

The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. The dungeon consists of M x N rooms laid out in a 2D grid. Our valiant knight (K) was initially positioned in the top-left room and must fight his way through the dungeon to rescue the princess.

The knight has an initial health point represented by a positive integer. If at any point his health point drops to 0 or below, he dies immediately.

Some of the rooms are guarded by demons, so the knight loses health (negative integers) upon entering these rooms; other rooms are either empty (0's) or contain magic orbs that increase the knight's health (positive integers).

In order to reach the princess as quickly as possible, the knight decides to move only rightward or downward in each step.

Write a function to determine the knight's minimum initial health so that he is able to rescue the princess.

For example, given the dungeon below, the initial health of the knight must be at least 7 if he follows the optimal path RIGHT-> RIGHT -> DOWN -> DOWN.

-2(K) -3 3
-5 -10 1
10 30 -5(P)

Notes:

The knight's health has no upper bound.
Any room can contain threats or power-ups, even the first room the knight enters and the bottom-right room where the princess is imprisoned.

38# Leetcode 483. Smallest Good Base

39# LintCode: Last Position of Target

Find the last position of a target number in a sorted array. Return -1 if target does not exist.
Example
Given [1, 2, 2, 4, 5, 5].
For target = 2, return 2.
For target = 5, return 5.
For target = 6, return -1.

public int lastPosition(int[] nums, int target) {
    // Write your code here
    if (nums.length == 0 || nums == null) {
        return -1;
    }
    int start = 0;
    int end = nums.length - 1;
    while (start + 1 < end) {
        int mid = start + (end - start) / 2;
        if (nums[mid]==target) {
            start = mid;
        } else if (nums[mid] < target) {
            start = mid;
        } else {
            end = mid;
        }
    }
    if (nums[end] == target) {
        return end;
    }
    if (nums[start] == target) {
        return start;
    }
    return -1;
}

40# LintCode: Maximum Number in Mountain Sequence

Given a mountain sequence of n integers which increase firstly and then decrease, find the mountain top.

Example
Given nums = [1, 2, 4, 8, 6, 3] return 8
Given nums = [10, 9, 8, 7], return 10

public int mountainSequence(int[] nums) {
    if (nums.length == 0 || nums == null) {
        return -1;
    }
    int start = 0;
    int end = nums.length - 1;
    while (start + 1 < end) {
        int mid = start + (end - start) / 2;
        if (nums[mid] > nums[mid + 1]) {
            end = mid;
        } else {
            start = mid;
        }
    }
    return Math.max(nums[start], nums[end]);
}

本文由今晚最快开奖现场直播发布于前端科技,转载请注明出处:面试中常见算法难点详解

关键词:

前端面试中的常见的算法问题,常见的算法

前端面试中的常见的算法难点 2016/10/27 · JavaScript· 7 评论 ·算法 原著出处: JackPu    固然大家大多时候前端非常少...

详细>>

中新的原生成分

一起来看 HTML 5.2 中新的原生元素 dialog 2018/01/20 · HTML5 ·dialog 原文出处: KirstyTG   译文出处:Keith    不到一个月前...

详细>>

关于启用,那些经验值得你看看

有关启用 HTTPS 的有个别经验分享 2015/12/04 · 基本功技艺 ·HTTP,HTTPS 原著出处:imququ(@屈光宇)    随着境内互联网情...

详细>>

Web前端优化最佳实行及工具集锦,关于web端的优

Web前端优化最佳实践及工具集锦 2015/03/11 · JavaScript· Web开发,工具 原文出处: CSDN 王果编译整理    前端的性能对于...

详细>>